Polynomials

Key Points:

- A <u>polynomial</u> is an expression that can be written in the form $a_n x^n + \cdots + a_2 x^2 + a_1 x + a_0$, where n is a positive integer.
- Each of the "a" terms are <u>coefficients</u>, which are numbers they can be whole numbers, fractions, or decimals. The <u>degree</u> of the polynomial is the highest "n" term. The <u>leading coefficient</u> is the coefficient attached to the highest "x" term. Finally, the <u>leading term</u> is the term with the highest "x" term.

Leading coefficient Degree
$$\underbrace{a_n x^n + ... + a_2 x^2 + a_1 x + a_0}_{\text{Leading term}}$$

For example:

 $3 + 2x^2 - 4x^3$ is a polynomial in x with degree 3, leading coefficient -4 and leading term $-4x^3$

• We can multiply, add, and subtract polynomials.

Polynomial Videos

- Polynomials: Identifying Degree, Leading Term & Leading Coefficient
- Polynomials: Adding & Subtracting
- Polynomials: Multiplication Using Distributive Property
- Polynomials: Multiplication FOIL Method
- Polynomials: Multiplication--Perfect Square Trinomial
- Polynomials: Special Product-Difference of Square

Practice Exercises

Follow the directions for each exercise below:

1. Identify the degree, leading term, and leading coefficient of the polynomial

$$5t^5 - 2t^3 + 7t$$

- 2. Find the sum of the polynomials: $(12x^2 + 9x 21) + (4x^3 + 8x^2 5x + 20)$
- **3.** Find the difference of the polynomials:

$$(7y^4 - y^2 + 6y + 1) - (5y^3 - 2y^2 + 3y + 2)$$

- 4. Multiply the polynomials: $(2x+1)(3x^2-x+4)$
- **5.** Multiply (these are polynomials with two terms, also called *Binomials*):

$$(2x-18)(3x+3)$$

- **6.** Expand the <u>perfect square</u>: $(3x 8)^2$
- 7. Multiply (the result of this multiplication is called a <u>Difference of Squares</u>:

$$(9x+4)(9x-4)$$

Answers:

1. Degree: 5

Leading Coefficient: 5

Leading Term: $5t^5$

$$4x^3 + 20x^2 + 4x - 1$$

3.
$$7y^4 - 5y^3 + y^2 + 3y - 1$$

4.
$$6x^3 + x^2 + 7x + 4$$

5.
$$6x^2 - 48x - 54$$

6.
$$9x^2 - 48x + 64$$

7.
$$81x^2 - 16$$